Archaeomalacology: Shells in the Archaeological Record

Edited by
Katherine Szabó
Catherine Dupont
Vesna Dimitrijević
Luis Gómez Gastélum
Nathalie Serrand

BAR International Series 2666
2014
Editors of the volume

Katherine Szabó
Associate Professor
Centre for Archaeological Science
School of Earth and Environmental Sciences
University of Wollongong
NSW 2522
Australia
kat@uow.edu.au

Catherine Dupont
Researcher
CNRS UMR 6566 CReAAH « Centre de Recherche en Archéologie, Archéosciences, Histoire »
CNRS, Université de Rennes 1, Rennes 2, Nantes, Le Mans et Ministère de la Culture
Bâtiment 24-25, Université de Rennes I – Campus Beaulieu 74205CS, 35042 Rennes Cx
France
catherine.dupont@univ-rennes1.fr

Vesna Dimitrijević
Professor
Laboratory for Bioarchaeology, Department of Archaeology
Faculty of Philosophy, University of Belgrade
Čika Ljubina 18-20, 11000 Belgrade
Serbia
vdimitri@f.bg.ac.rs

Luis Gómez Gastélum
Professor
Departamento de Ciencias Sociales
Centro Universitario de Tonalá
Universidad de Guadalajara
Mexico
gastelman@cencar.udg.mx

Nathalie Serrand
Researcher
In charge of archaeological research and field operations
Inrap: Institut national de recherches archéologiques préventives
Route de Dolé
97113 Gourbeyre
Guadeloupe
nathalie.serrand@inrap.fr

With the technical assistance of Francis Bertin (CNRS, CReAAH, UMR6566, Université de Rennes I – Campus Beaulieu 74205CS, 35042 Rennes Cx France) for the page setting. Assistance with English language editing was provided by Luke Gliganic.
Contents

Preface ... 5

Jean-Denis Vigne, Christine Lefèvre and Marylène Patou-Mathis

Introduction .. 7

Acquisition and use of shell raw materials in prehistory

1. The use of marine mollusc shells at the Neolithic site Shkarat Msaied, Jordan 9
 Aiysha Abu-Laban

2. Evaluating the role of molluscan shells assemblage recovered from Padri, a coastal Harappan settlement in Gujarat, India ... 19
 Arati Deshpande-Mukherjee and Vasant Shinde

3. The provenance and use of fossil scaphopod shells at the Late Neolithic/Eneolithic site Vinča – Belo Brdo, Serbia ... 33
 Vesna Dimitrijević

4. Perforated shells from an Early Mesolithic cemetery at La Vergne (Charente-Maritime, France): from acquisition to use and (sometimes) to wear 43
 Catherine Dupont, Luc Laporte, Patrice Courtaud, Henri Duday and Yves Gruet

5. Shell use in West Mexico and the Southwestern United States. An archaeological comparison ... 53
 Luis Gómez Gastélum

6. Occurrences of exogenous freshwater mussel shells (Bivalvia: Unionida) during the pre columbian ceramic age of the lesser Antilles .. 65
 Nathalie Serrand and Kevin S. Cummings

7. Dead from the sea: worn shells in Aegean prehistory ... 77
 Tatiana Theodoropoulou

8. Temporal changes in shell bead technologies based on Levantine examples 91
 Daniella E. Bar-Yosef Mayer

9. Shell tools in an early Neolithic coastal site in the Cantabrian region (Northern Spain):
an experimental program for use-wear analysis at Santimamiñe cave 101
 David Cuenca-Solana, Igor Gutiérrez-Zugasti and Ignacio Clemente

Shell middens and shells as a food resource

10. Shell Middens and the use of mollusces in the Late Middle Holocene in the Rio de la Plata: an ethnoarchaeological contribution ... 111
 Laura Beovide

11. Marine Resource Exploitation at Mersa/Wadi Gawasis (Red Sea, Egypt). The Harbour of the Pharaohs to the Land of Punt ... 121
 Alfredo Carannante, Rodolfo Fattovich and Carla Pepe
12. Shellfish gathering during the Iron Age and Roman times in the Northwest of the Iberian Peninsula
Carlos Fernández-Rodríguez, Victor Bejega-García and Eduardo González-Gómez-de-Agüero

13. Shellfishing and Horticulture in Prehistoric Northern New Zealand
Tiffany James-Lee

14. Fisher-Gatherers of the Red Sea: Results of the Farasan Archipelago Shell Sites Project
Matt Gregory Meredith Williams

15. Shell exploitation at Playa del Tesoro and Banderas Mexican Pacific coast
José Beltrán

16. Oysters, Pheasants and Fine Foods. “High Class” Products in Alife (Campania, Italy) during and after the Roman Empire
Alfredo Carannante, Salvatore Chilardi, Daniela Rebbecchi, Annalisa Del Santo, Roberto Vedovelli

17. Archaeozoological analysis of molluscan fauna from the Late Bronze Age stratum of site 4 of Tell Jenin (Northern West Bank, Palestine)
Ademar Ezzughayyar, Khalid M. Swaileh

18. Acquisition and management of marine invertebrates resources on a pre-Roman coastal settlement: the site of Dossen Rouz (Locquémeau-Trédrez, Brittany, France)
Caroline Mougne, Catherine Dupont, Anna Baudry, Laurent Quesnel and Marie-Yvane Daire

19. Dynamics of palaeoenvironmental conditions over the last millennia by archaeomalacological data (on example of ADK-009 shell midden, Adak Island, Aleutian Islands)
Zhanna Antipushina

20. Biostratigraphy of shells and climate changes in the Cantabrian region (Northern Spain) during the Pleistocene-Holocene transition
Igor Gutiérrez-Zugasti and David Cuenca-Solana

21. Deposits of terrestrial snails: Natural or Anthropogenic processes?
Eloísa Bernáldez-Sánchez and Esteban García-Viñas

22. Micro-Freshwater Gastropod Remains from Çatalhöyük, Turkey: Preliminary Environmental Observations
Burçin Aşkım Gümüş and, Daniella E. Bar-Yosef Mayer

23. Mollusc Shells from Archaeological Building Materials
Matt Law

Shells as indicators of palaeoenvironment, site formation and transformation

20. Biostratigraphy of shells and climate changes in the Cantabrian region (Northern Spain) during the Pleistocene-Holocene transition
Igor Gutiérrez-Zugasti and David Cuenca-Solana

21. Deposits of terrestrial snails: Natural or Anthropogenic processes?
Eloísa Bernáldez-Sánchez and Esteban García-Viñas

22. Micro-Freshwater Gastropod Remains from Çatalhöyük, Turkey: Preliminary Environmental Observations
Burçin Aşkım Gümüş and, Daniella E. Bar-Yosef Mayer

23. Mollusc Shells from Archaeological Building Materials
Matt Law
Preface

This publication is one of the volumes of the proceedings of the 11th International Conference of the International Council for Archaeozoology (ICAZ), which was held in Paris (France) 23rd-28th August 2010. ICAZ was founded in the early 1970s and ever since has acted as the main international organisation for the study of animal remains from archaeological sites. The International Conferences of ICAZ are held every four years, with the Paris meeting – the largest ever – following those in Hungary (Budapest), the Netherlands (Groningen), Poland (Szczecin), England (London), France (Bordeaux), USA (Washington, DC), Germany (Constance), Canada (Victoria), England (Durham) and Mexico (Mexico City). The next meeting is scheduled be held in Argentina in 2014. The Paris conference – attended by some 720 delegates from 56 countries – was organised as one general and thirty thematic sessions, which attracted, in addition to archaeozoologists (zooarchaeologists), scholars from related disciplines such as bone chemistry, genetics, morphometry anthropology, archaeobotany, and mainstream archaeology. This conference was also marked by the involvement in the international archaeozoological community of increasing numbers of individuals from countries of Latin America and of South and East Asia.

As nearly 800 papers were presented at the Paris conference in the form of either oral or poster presentations, it was not possible to organize a comprehensive publication of the proceedings. It was left up to the session organizers to decide if the proceedings of their session would be published and to choose the form such a publication would take. A comprehensive list of publication plan of the 11th ICAZ International Conference is regularly updated and posted on the ICAZ web site.

The conference organizers would like to take this opportunity to thank the Muséum national d’Histoire naturelle, the Université Pierre et Marie Curie, the Centre national de la Recherche scientifique and the ICAZ Executive Committee for their support during the organization of the conference, and all session organisers – some of them being now book editors – for all their hard work. The conference would not have met with such success without the help of the Alpha Visa Congrès Company, which was in charge of conference management. Further financial help came from the following sources: La Région Île-de-France, the Bioarch European network (French CNRS; Natural History Museum Brussels; Universities of Durham, Aberdeen, Basel and Munich), the LeCHE Marie Curie International Training Network (granted by the European Council), the Institute of Ecology and Environment of the CNRS, the Institut National de Recherche en Archéologie Préventive (INRAP), the European-Chinese Cooperation project (ERA-NET Co-Reach), the Centre National Interprofessionnel de l’Économie Laitière (CNIEL) and its Observatory for Food Habits (OCHA), the Ville de Paris, the Société des Amis du Muséum, the French Embassies in Beijing and Moscow, the laboratory “Archaeozoology-Archaeobotany” (UMR7209, CNRS-MNHN), the School of Forensics of Lancaster, English Heritage and private donors.

Jean-Denis Vigne, Christine Lefèvre and Marylène Patou-Mathis
Organizers of the 11th ICAZ International Conference
1 - THE USE OF MARINE MOLLUSC SHELLS AT THE NEOLITHIC SITE
SHKARAT MSIAED, JORDAN

Aiysha ABU-LABAN
Department of Cross-Cultural and Regional Studies, University of Copenhagen, Snorresgade 17-19, 2300 Copenhagen S, Denmark, aiysha@hum.ku.dk

Abstract: Marine shells from the Mediterranean Sea and the Red Sea were widely used as ornaments by early Neolithic hunter-gatherers as well as sedentary groups in the southern Levant. A study of marine shells from the Neolithic site Shkarat Msaiad (9,500±90 to 8,880±80 BP) shows that the diversity of species is high. Most of the shells were used as beads, and rather simple modification techniques were applied. The variation of bead types is quite limited when compared to other sites in the region. From an intra-site spatial analysis of artefacts at Shkarat Msaid it is suggested that shell artefacts are like stone and bone tools stored in communal buildings. Because of the high frequency of marine shells in the building designated to the interment of the dead, they are strongly associated with mortuary rituals.

Keywords: Marine molluscs, Shell beads, Neolithic, Exchange, Southern Levant

Introduction

During the Middle Pre-Pottery Neolithic period (MPPNB) (c. 9,300-8,300 BP) (Kuijt and Goring-Morris 2002:366), marine shells were collected and used, mainly as ornaments, by hunter-gatherer groups in the southern Levant (Goring-Morris 2005:97; Kirkbride 1967:9). Many scholars consider their presence in the material cultural repertoire an ipso facto proof of exchange between groups (Bar-Yosef and Belfer-Cohen 1989; Kuijt and Goring-Morris 2002). When found at inland sites far from their sources, marine shells are assigned a high value and typically categorised as prestige items (Banning 1998:215; Watkins 2008:160). The study of marine mollusc shells from the Neolithic site Shkarat Msaiad provides an insight into the use of shells among hunter-gatherer societies in a semi-arid inland region (Abu-Laban 2010). Excavation of the site Shkarat Msaiad was carried out by a team from the University of Copenhagen between 1999 and 2005, and again in 2010.1

The site Shkarat Msaiad

Shkarat Msaiad is situated c. 13 km north of Petra (fig. 1-1), in the Nemelleh region; a semi-arid steppe area c. 980 m above sea level between two mountain peaks (Gebel 1988:8; Jensen et al. 2005:115). The eastern area of the site is dominated by a sandstone plateau, and the west by plains of drainage systems, which run into Wadi Araba (Gebel 1988:71, 83). The vegetation today is characterised by forests of oak and pistachio, as well as shrubs and other minor plants. These plant species generally grow in the area of the Arabian Plateau and surround the site from the east. In the west, the siqs are wooded with pistachio, oak and juniper (Gebel 1988:81; Jensen et al. 2005:115).

Figure 1-1. Map of MPPNB sites in the southern Levant mentioned in the article.

1The study does not encompass the shell assemblage from the last season in 2010.
Shkarat Msaied was mainly occupied during the MP-PNB period – seven uncalibrated conventional 14C dates give a range from 9,500±90 to 8,880±80 BP (Hermansen et al. 2006:3). The inhabitants comprised a small group of hunter-gatherers who also practised cultivation and possibly the herding of goats (Jensen et al. 2005:117-119). The site was only occupied in certain seasons of the year; most probably in spring when wild plants could be harvested and cereals processed (Jensen forthcoming). Shkarat Msaied is estimated to have covered an area of c. 1000 m², of which 600 m² have been exposed (Jensen et al. 2005:115). The site consists mainly of circular buildings arranged in clusters and with open spaces between some of them (fig. 1-2). The northern part of the settlement shows evidence of domestic use, whereas the southern part bears evidence of activities of a more communal character. The open spaces functioned as passages, and in certain areas there is evidence of activities such as food processing and tool production.

Wood charcoal samples (Lab no. Aar-9335, Aar-9336, Aar-9337, Wk-15159, Wk-15160, Wk-26490, Wk-26491)

From a regional perspective and compared to the larger sedentary settlements (4-5 ha) in the Mediterranean zone and the smaller camps (maximum 300 m² in size) occupying the desert regions (Kuijt and Goring-Morris 2002), Shkarat Msaied is a medium sized settlement.

The marine molluse shells – species and aspects of exchange between groups

Although the amount of marine shells found at the site is low – 379 (NISP), the diversity of species is quite high, with 26 different species identified (table 1-1). More than half of the shell assemblage (57%) ultimately derives from the Red Sea, and less than one fifth (18%) from the Mediterranean. It was impossible to determine the species of the rest of the shell assemblage because the specimens were either too fragmented or worn. In fact, 26% of the shell assemblage was categorised as fragments, i.e. where less than half of the shell is present. Because of the distances over which the shells were transported –100 km to the Red

Figure 1-2. Site plan of Shkarat Msaied (Courtesy of Moritz Kinzel).
Sea and 160 km to the Mediterranean Sea – the possibility that the settlers procured the shells directly has been discounted. Thus, the marine shells at the site are considered to have been introduced as a direct consequence of exchange with neighbouring groups.

Comparing the distribution of the shells to that of other sites in the southern Levant, there is a patterned relationship between the quantity found in a given site and its location relative to the sources. The more distant a given material group is from the source, the lower the quantity. Such a distribution pattern produces a fall-off curve from which the process of exchange is explained as down-the-line exchange (Fig. 1-3.a and b). This kind of exchange is characterised as not being hierarchically organised, as there is no sign of a central place at which a certain material group was collected and/or produced. Exchange is consequently viewed as being exclusively reciprocal (Earle 1999:614; Renfrew 1977:73). This explanation model is one-dimensional as mechanisms of exchange are based solely on measurable factors such as geographical distance and statistical densities from excavations.

The most abundant species at Shkarat Msaied are cowries (Cypraeidae) including species in the genera *Cypraea*, *Erosaria*, *Lyncina* and *Monetaria* (148 NISP), of which the Red Sea *Erosaria nebrites* (93 NISP) is the most common. They are followed by species of *Nerita* (57 NISP). These two taxa are also among the dominant marine mollusc categories in other contemporary settlements such as Beidha (Reese unpublished manuscript) and Ayn Abu Nukhayla (fig. 1-4), as well as in smaller encampments in the Sinai such as Ujrat el Mehed and Wadi Tbeik. There is, however, an element of sub-regional variation, as the Sinai sites and Ayn Abu Nukhayla have *Conus* and *Dentalium* shells as the dominant genera (Bar-Yosef Mayer 1999:72; Spatz 2008:77). These two taxa are found in low quantities at Shkarat Msaied and Beidha. On the other hand, the Mediterranean bivalve species *Acanthocardia tuberculata* is well represented followed in quantity by the Red Sea species *Glycymeris livida* both at Shkarat Msaied and Beidha. Moreover, *Nassarius* shells are quite abundant at Ayn Abu Nukhayla (Spatz 2008:76), although the distance of this site to the Mediterranean Sea is higher as compared to Shkarat Msaied and Beidha, where only 6 and 8 *Nassarius* specimens were found respectively.

Cowrie (="Cypraea") shells seem to have been a ‘trend’ in the southern part of the southern Levant only, as they are not so common in the Mediterranean region at sites such as Nahal Betzet I, Kfar HaHoresh and Yiftahel (Spatz 2008). In this region however, *Cypraea* shells occur in mortuary contexts as grave goods and as eye inlays on plastered skulls as has been observed at Jericho (Kenyon 1957:124). The bivalve species *Acanthocardia* and *Cerastoderma* are among the dominant species constituting together between 30-85% of the marine assemblage at the aforementioned sites situated in the Mediterranean region (Spatz 2008). Although we are not dealing with an organised exchange of shells, there are indications that each group
had a preference for certain species. It is postulated that
the shells were primarily selected for their morphologi-
cal features or shape. Shkarat Msaied and Beidha, only
7 km apart, have unsurprisingly similar preferences for
shell species.

Figure 1-5. Modified shells in Shkarat Msaied. a. Cerastoderma sp. (61217), b. Nerita sp. (3715c), c. Engina mendi-
caria (251), d. Conus sp. (52506h), e. Erosaria sp. (71318c), f. Nassarius sp. (61328), g. Gastropoda indet. (61912),
h. Dentalium sp. (1972a), i. Phalium granulatum undulatum (3550), j. Cypraea sp. (3119). Possibly modified shell:
Donax sp. (71002), n. Glycymeris sp. (52503a). Scale=1cm.
<table>
<thead>
<tr>
<th>Species</th>
<th>Natural Habitat</th>
<th>NISP</th>
<th>Modified</th>
<th>Unmodified</th>
<th>Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthocardia sp.</td>
<td>Mediterranean Sea</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Acanthocardia tuberculata</td>
<td>Mediterranean Sea</td>
<td>54</td>
<td>40</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Cerastoderma glaucum</td>
<td>Mediterranean Sea</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Chama sp.</td>
<td>?</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Donax trunculus</td>
<td>Mediterranean Sea</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glycymeris livida</td>
<td>Red Sea</td>
<td>28</td>
<td>16</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Pinctada sp.</td>
<td>Red Sea</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Tridacna maxima</td>
<td>Red Sea</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Canarium erythrinus</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canarium fusiformis</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clanculus pharaonius</td>
<td>Red Sea</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clypeomorus bifasciata</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conomurex fasciatus</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conus mediterraneus</td>
<td>Mediterranean Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conus tessulatus</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conus sp.</td>
<td>?</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cypraea sp.</td>
<td>?</td>
<td>36</td>
<td>35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Engina mendicaria</td>
<td>Red Sea</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erosaria macandrewi</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erosaria nebrites</td>
<td>Red Sea</td>
<td>93</td>
<td>89</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Lambis truncata sebae</td>
<td>Red Sea</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lyncina cameola</td>
<td>Red Sea</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lyncina lynx</td>
<td>Red Sea</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monetaria annulus</td>
<td>Red Sea</td>
<td>16</td>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nassarius gibbosulus</td>
<td>Mediterranean Sea</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nerita sanguinolenta</td>
<td>Red Sea</td>
<td>57</td>
<td>31</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Phalium granulatum undulatum</td>
<td>Mediterranean Sea</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polinices mammilla</td>
<td>Red Sea</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thais savignyi</td>
<td>Red Sea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastropoda indet.</td>
<td>?</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mollusca indet.</td>
<td>?</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Scaphopoda indet.</td>
<td>?</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Includes fragments of shells with signs of modification

Table 1-1. Marine mollusc species at Shkarat Msaied.
Producing shell beads

More than two thirds of the shells (71%) at Shkarat Msaied have undergone deliberate modification. Most of the shells (96%) can be defined as simple beads, as they only have one hole (Bar-Yosef Mayer 1999:30). The hole is produced at the umbo for all bivalves and at the apex for most of the gastropods (fig. 1-5a and 5b). In some gastropod shells the hole was produced on the body area, either at the body whorl or near the aperture (fig. 1-5c and 5d). Studies show that the preferred technique to produce holes on the umbo and apex was grinding. Gouging or direct percussion was used typically to produce a hole on the body of the shell (Francis 1989). I conducted a small scale experiment on a group of shells, which were ground on a flat piece of sandstone. Sandstone is abundant at the site and used extensively as a building material and for producing tools. Preliminary results show that producing a hole by grinding the umbonal area on bivalves takes less than three minutes, whereas producing a hole on the body area of Clanculus pharaonius shells can take up to 10 minutes.

For Cypraea and Nassarius shells, the dorum is typically removed by hammering and/or grinding (Francis 1989:29). The edges of some of the cowrie shells seem to have been polished to give a smooth and even surface (fig. 1-5e and 5f).

Sawing is more time consuming than the aforementioned techniques and has only been applied to a few specimens such as a Conus shell (fig. 1-5d), and for the production of disc beads (fig. 1-5g). The disc beads are made from gastropod shells and seem to involve sawing off the spire from the rest of the shell as well as removing the top of the spire. A sharp edged flint blade could be used as a sawing device, and the process can take up to two hours (Francis 1989:28). The Dentalium shells might also have been sown or simply broken (fig. 1-5h). Only one cowrie shell bead had the dorum intact as holes were produced on each side of it; possibly by gouging (fig. 1-5i).

Besides exploiting shells for the use as beads, it is possible that the three Phalium granulatum undulatum fragments found at the site were originally used as bangles or bracelets (Bar-Yosef Mayer 1999:31) (fig. -5j). Some shells might have had more utilitarian functions. A fragment of a shell could have been used as a scraper (fig. 1-5k), and two complete unmodified Tridacna maxima shells could have been used as some kind of container (fig. 1-5l). One of the Tridacna shells was found in situ on a large working sandstone slab in building D.

There are few examples of shells which have natural perforations. Three shells have holes which are characterised as having fine regular striations. The holes have a tapered diameter which is wider at the outer surface (fig. 1-5m). Such holes can only be produced by carnivorous gastropods (personal communication Kenneth Thomas 2008). Otherwise, most natural holes are generally observed in bivalve shells at the umbo area and have an uneven diameter (fig. 1-5n). Although it would require the use of wear analysis to be certain, naturally perforated shells were probably also used as ornaments (Anderson 2001:132; Claassen 1998:40).

From the study of the modified shells, investment of time as well as the level of skill required for the production of most of the shell beads at Shkarat Msaied proved to be on a low scale. In general, the modification of the shells did not require specialised tools. At present it is impossible to say whether the shells were brought to the site pre-modified or were worked on the site. There is, however, no direct evi-
of stone beads, which was an organised endeavour conducted on a collective level.

Compared to other sites in the region, the variety of bead types at Shkarat Msaied seems restricted, as it only comprises simple beads and disc beads. At other sites such as Ayn Abu Nukhayla, the assemblage also includes bead pendants (Bar-Yosef Mayer 1999:70; Spatz 2008:81).

Intra-site distribution of shells and exchange within a group

In order to shed more light on the use of marine shells at Shkarat Msaied, an intra-site spatial analysis was conducted comparing marine shell distributions to the distributions of other material categories; bone and stone tools. Shells, bone and stone tools are all distributed across the whole site, and are found both in domestic and communal spaces (fig. 1-2). In the domestic buildings (A, B, C, D, E and R), the maximum number of shells found was 25 specimens. They were either absent or found in low quantities in the passage areas (III and IV) and enclosures (b and c), as well as in the small rooms (M, N, G, O and W). Ground stone artefacts were, however, quite abundant there and this implies that shell bead production and/or storage was not part of the function of these spaces.

The analysis shows that the highest concentration of shells as well as stone and bone tools is to be found in building P and enclosures ‘d’ and ‘e’. These facilities are interpreted as storage and possibly also for general production. These areas are not directly accessible from any of the domestic buildings, thus they cannot be linked to any private use and should be interpreted as communal. The very high number of finds in areas P, ‘d’ and ‘e’ compared to the buildings designated a domestic function gives an indication that production and distribution of not only tools but also ornaments was controlled on a collective or group level. Shell ornaments, even if they were used for personal expression (Sciama 1998), were like utilitarian objects controlled collectively.

Looking further at the communal buildings F, K and J, all bear evidence of special purpose activities. Building F featured the highest quantity of shells recovered (45 NISP), whereas buildings K and J yielded no more than 8 and 11 specimens respectively. Building J housed activities related to food production, as suggested by grinding tools found in situ on the floor. In building K, more than 20 stone objects were placed deliberately on one of the stair cases and on the floor. Some of the stone objects showed remnants of red ochre, and their context implies a ritual activity. Here, only a few shells were found, suggesting that the rituals carried out in this building did not involve marine shells.

Building F was used for mortuary rituals, as it housed all burials. The burials were both primary and secondary, and all bodies were interred below the floors of the building. Finding a high frequency of marine shells in this building strongly indicates that marine shells were used in mortuary ceremonies. Only three shells were found in direct burial context, however, they were in a burial fill and not deposited as grave goods. During the MPPNB period leaving grave goods with the interred was not a widespread practice (e.g. Simmons et al. 1990:70).

From the distribution of the shells it is not thought that marine shells were used as status or rank markers, that is if hoarding or other evidence of accumulation should be understood as wealth keeping (Hamon and Quilliec 2008). In other contemporary settlements such as Ain Ghazal, Beidha and Kfar HaHoresh, hoarding involved utilitarian objects such as flint tools, or figurines and other cult objects such as plastered skulls. Shells are almost entirely absent from such contexts (Goring-Morris 2005:97; Kirkbride 1967:10; Kuijt 2000:151; Rollefson 2000:167).

Conclusion

Marine shells were used at Shkarat Msaied as personal ornaments. Cowrie and Nerita shells were among the favoured types. The time and skills required for the production of the shell artefacts proved to be low level, as opposed to the production of stone beads. Their archaeological contexts suggest that the distribution of marine shells to group members was more or less controlled at a collective level. This was possibly done in order to ensure an egalitarian wealth distribution. It has been suggested by Kuijt (2000) that mortuary rituals, which involved among other practices skull removals and skull caching, were used by MPPNB groups as a means of maintaining egalitarian social systems as a response to emerging social differentiation (Kuijt 2000). Should the marine shells be assigned a value at Shkarat Msaied, it was not necessarily due to their distant origin, but rather because of their association with mortuary rituals.

Acknowledgements

Many thanks to Henk Mienis for his help with species identifications. Thanks to David Reese, Ashton J. Spatz and Daniella Bar-Yosef for allowing me to use information from their studies of marine molluscs from sites in the southern Levant as comparative material. Thanks also to the Shkarat Msaied project team, especially Charlott Hoffmann Jensen and Ingolf Thuesen, who gave me access to the marine mollusc shell assemblage. Thanks to Susanne Kern, Sarah Cox and Kristoffer Damgaard for reviewing this article; the final form of the paper is my responsibility. Thanks to Susanne Kern for supervising my MA thesis on which this article is based.

1 It is worth mentioning that a couple of sandstone and bone disc beads were also found at Shkarat Msaied. These beads require the same manufacturing processes and tools as the green stone beads. It is likely that they were produced on site as both materials are abundant at the site.

2 This study only includes the distribution of ground stone tools.

3 In the 2010 season a child burial was found in building R.
References

REESE, DAVID. Unpublished manuscript. Neolithic shells from Beidha.

RENFWREW, COLIN. 1977. Alternative models for exchange

