Proceedings
of the 4th International Congress
of the Archaeology
of the Ancient Near East
29 March – 3 April 2004, Freie Universität Berlin

Volume 2:
Social and Cultural Transformation:
The Archaeology of Transitional Periods and Dark Ages
Excavation Reports

Edited by
Hartmut Kühne, Rainer M. Czichon,
and Florian Janoscha Kreppner

2008
Harrassowitz Verlag · Wiesbaden
WORKSHOPS AND ACTIVITY AREAS IN THE PPNB PERIOD:
THE EXCAVATIONS AT SHKABAT MSAIED
CHARLOTT HOFFMANN JENSEN

INTRODUCTION

The Danish excavations at the MPPNB site of Shkabat Msaid have revealed a large area (so far around 600 m² has been excavated) with circular stone-built architecture as well as a number of smaller enclosures and walls added later (Fig. 1, Hermansen and Jensen 2002, Jensen in press, Jensen et al. nd., Kaliszcz et al. 2002). Although the buildings have not been constructed simultaneously, the stratigraphic evidence indicates that the buildings at least were inhabited at the same time. So far only two of the buildings excavated have more than one architectural phase, Unit F and E. The rest are single-phased buildings. But re-plastering of floors and change in the internal structures in buildings are seen.

The dating is based on two C-14 dates with the conventional dates of 9144 ± 55 BP (Wk-15169), and 8977 ± 60 BP (Wk-15159) respectively and on the chipped stone material. Here a majority of the arrowheads are Jericho points (almost 70%) or Jericho-related types (12%), while both Helwan (6 pieces, c. 1%) and Byblos points (10%) are represented as well.

The subject of this paper is a presentation and discussion of a number of finds from the excavation where production related activities have been identified. It does not include a thorough examination of all deposits, but includes an overall view of the contextual information of the materials excavated as well as concentrating on some of the excavated buildings and outdoor areas which have shown to have deposits of interest in relation to workshop activities.

ACTIVITY AREAS

First I would like to make a few comments on the study of workshop activities and activity areas. There are two ways of looking at activities: First of all identifying areas where a specific production took place. The materials found represent the production process, including the tools used, which can be analyzed for a reconstruction of the process involved. However, it is often the case that the material deriving from a specific production process is not found in situ, but dumped at or near the site. This is also supported by the results of ethnographic analyses (Murray 1980) and the summary of research on discard patterns by Hardy-Smith and Edwards (2004). An obvious example of in situ and on-site discarded workshop material is the production of sandstone rings at Ba`ja, southern Jordan, excavated by Dr. H. G. K. Geipel. Here, all or parts of the elements representing the production process were found both in situ as well as in a dump close to the settlement (Geipel and Bienert 1997: 252-257; Geipel pers. comm.).

On the other hand, I believe that the finds in buildings which do not represent a specific in situ working process can be used to identify activities in which the household was engaged in either in or outside the house.

The types of activities in question here represent one level of activity study: The intra-site level. Here, questions involve where the activities took place and if any specific patterns concerning craft specialization and the social organization of the inhabitants in general can be identified.

Charelott Hoffmann Jensen, Carsten Niebuhr Institute, University of Copenhagen
However, activities can also be studied on the inter-site level. In this case the question is if any of the activities are specific to a site and if the site is involved in inter-site regional exchange programs. Again, the sandstone rings from Ba'ja can be used as an example. The rings have been found as finished products at other contemporary sites in the region, which indicates that the production is specific to the site of Ba'ja, but the rings are part of a larger regional exchange system, where it is possible that other sites contributed to the system with other objects.

It is not the main focus here to discuss the level of craft specialization involved in the observed working processes. Therefore this issue will only be mentioned shortly. The available information and the study done so far does not provide the basis for a full understanding of the level of specialization seen in various working processes present at Shkārat Ma‘ān. The issue of craft specialization is complex, since researchers define the topic differently and concentrate on various aspects involved. The work by Muller (1984), Cortin (1991), Cross (1993) and Miller (1996) all show the necessity of a close examination of the material and its context in order to judge the type and level of craft specialization if present. Muller argues for a clear separation between site and producer specialization, while Miller focuses on the skills needed as well as the outcome. All are included in the thorough analysis by Cortin, while Cross in a study on craft specialization a non-stratified societies uses the uniformity of the finished product and a segmentation of the production in different stages and places as the defining elements of craft specialization.

Intra-site level activities at Shkārat Ma‘ān

Various activities have taken place at Shkārat Ma‘ān. Only in a few cases have material been found in a workshop related context that gives information on the production process and where the activities originally took place.

The most obvious activity at a settlement is food preparation. The analysis of the faunal remains from Shkārat Ma‘ān by Perinelle Banggaard (2004) is preliminary. Only material from a restricted number of squares is recorded. But the analysis as well as the field diaries show that animal bones have been found all over the site indicating, not surprisingly, that the activities took place in areas all over the settlement. However, there are differences to be seen between the domestic units included in the analysis by Perinelle Banggaard.

One area shows a particularly high context of faunal remains: The open area I in the northwestern part of the settlement. The central and western part of the area is interpreted as a dump. No clear surfaces have been identified and the soil is described as dark and loose, with a high organic content, and with a high content of animal bones and chipped stone material. In the eastern part between the walls added to Building unit C, a number of plaster floors have been excavated which gives the eastern limit of the dump area. Here, the soil has a much lower organic content and fewer bones are found during excavation. The finds in the open area I may indicate that it was used for butchering activities and discarding of meat and bones, while the plastered surfaces either were used for other activities or were kept clean.

Turning to the vegetable part of the diet, the indirect evidence in the form of grinding tools show a different picture. A single building is particularly interesting: Building unit J in the southwestern corner of the excavated area (Fig. 2). As discussed by Mikkel Bille Petersen (2004), Unit J is not considered a domestic building based on the large size of the building compared to most other buildings at the site, the presence of two doorways, not seen in other buildings at the site, of which one is very wide, internal installations, as well as the finds. At least six large grinding slabs were found here, some of which were still placed in situ on the floor. Also a number of pestles and hand stones were found. These are also numerous in the small adjacent room of G. In most other buildings, which are all considered to be domestic, as well as in the open areas, pestles and hand stones are found, but no grinding slabs. The only other building where grinding slabs have been found in situ, two in all, is Unit F (Fig. 3), which is also considered to be a communal building. Again, the interpretation is based on the large size of the building, internal installations and finds, but also on the presence of a burial in the stone feature to the right of the doorway, the only burial found at the site so far. This type of stone installation is found in a number of buildings around the site. They are all flanked by one or more upright standing stones, in this case a single very large upright slab in front, and except for the one in Unit F, all are constructed as compact layers of stone set in mortar. These stone features have been discussed in detail elsewhere (Hermansen and Jensen 2002).

The concentration of grinding slabs in the two largest and probably non-domestic buildings and hand stones found all over the site, indicates that inhabitants from all over the site were engaged in the preparation of the vegetable diet, but the activities took place in a communal area.

Chipped stone

The analysis of the chipped stone material has not been completed. But so far it has not been possible to identify any specific workshops for blank or tool production, except from what will be mentioned below. It is evident, however, that the complete process did take place at the site as seen from the number of cores, core trimming elements etc. found around the site, all primarily of locally available raw materials (table 1). An overview of the chipped stone material excavated is presented elsewhere (Jensen et al. in prep.). Apparently some level of specialized activity in the production of especially blade blanks for tool production is present seen from the naviform and naviform related types of cores as well as the core trimming elements found.

Read production

One specific activity which can be identified is bead production. Two find spots are of interest here (Fig. 1): 1) Area just to the north of building B (layers below Enclosure a), 2) A small area located in the central part of the outdoor area I.

Both areas are defined as relevant for bead production because the contents include large numbers of chipped stone, especially borers, debris of the raw material used, which in some cases is identified as turquoise, as well as a few unfinished and broken beads. Not all the waste material and beads of the green mineral used have been studied. Therefore it cannot be excluded that both turquoise and malachite was in use at the site.
The deposit below Enclosure a

The material in the first area of interest has been deposited prior to the construction of the wall of Enclosure a, but obviously after the construction of the main building units of the site (Fig. 4). In all, 348 pieces of chipped stone derive from the relevant loci which include the area to the south and west of the enclosure wall. A few other objects of stone and bone have been found here, but none that seem to belong to the bead production process.

The chipped stone materials found include cores, elements from the production and rejuvenation of cores, debitage, and finished tools, indicating that the material represents the complete process of chipped stone production from chunk to finished tools.

Area 1 deposit

The second deposit consists of a small more or less circular area ca. 50 cm in diameter, just to the west of the limit of the plaster floors in area 1. It is not quite clear from the excavation diaries if the deposit predates the construction of the wall dividing area 1 and thus separating the area with direct access from building units A and B from the rest of Area 1, neither if it is contemporary with the plaster floors. The deposit has an exceptionally high content of chipped stone, 2364 in all, as well as waste from bead production and a single bead. No other objects were found in the locus. The marked difference between this deposit and the surrounding area both regarding the concentration of finds as well as the soil type, may indicate that it should be interpreted as a pit even though it was not defined as such by the excavator, which is of interest in the discussion of the location of the production area and the way the waste material later has been dumped. As with the previous deposit, the chipped stone material found here represents the complete process from chunks to finished tools.

Working process

It is not possible at the moment to make a complete reconstruction of the working process based on the finds since not all the material was accessible to me when preparing the paper. But using the knowledge from several published bead workshops, ethnographic and experimental work it is possible to get an idea of the working process here.

In a detailed study of the production of skull beads from the early Neolithic Franchthi Cave in Greece Michele Miller (1996) has defined a number of steps in the production process (Fig. 5). Although the raw material found here is different, part of the process seems to be identical. Based on the waste material consisting of small chips the production of blanks must have been done partly by chipping. If it is done by producing a long cylinder afterwards cut or sliced in pieces, as seems to be the case in PPNa Caylûnî, south-eastern Turkey (Altınbilek et al. 2001: 137), or if each bead blank is produced separately is not possible to say. A study of carnelian bead manufacture based on workshop debris and drills from Kumartepe, a 6th mill. site also in south-eastern Turkey shows that each blank was produced separately on a carnelian flake (Calley and Grace 1988: 74-75). Following the process identified by Miller the next step will be boring of a more or less centrally placed hole after which the final grinding and polishing of the surface is done to achieve the desired shape and size. A large unfinished bead with a central hole found in the deposit in Enclosure a indicates the same procedure here.

The experimental study by Miller (1996: 17) as well as the study on the Kumartepe material (Grace 1989-90: 147) has shown that the use of sand as an abrasive decreased the time needed to penetrate the bead. Since no experimental work or a microscopic study of the beads has been applied here, it is not evident if the same has been used in use in this case. However, sand was readily available to the inhabitants. The beads found at the site show that the hole is always made from both faces. This is also consistent with what can be seen from drawings of beads from other Neolithic workshops, such as the Late Neolithic site of Gebe Na’ja in eastern Jordan excavated by Allison Betts in the 1980’s (Finlayson and Betts 1990: Fig. 2).

During the last step in the process, the finishing of the surface, an abrasive also seem to have been used. Miller (1996: 20) used wet sand and finer sediments on a grinding stone when the beads were ground into the final shape and later polished. Ethnographic studies have also shown that the finishing of the surface is done by the use of abrasives (Kenoyer et al. 1991: 54). The use of sediments as abrasives is also supported by the polished stone axes on which the surface show signs of sand used in the final grinding and polishing of the surface. It cannot be excluded that some marks on the surface derive from use, but the marks are found all over the polished surface and not just near the working edge. Also, marks are visible on the surface on a miniature axe where it does not seem likely that they derive from use. The presence of small scraping like tools in the material presented here (see below) suggests the inclusion of other working processes in excess of grinding against a stationary grinding slab with the use of various abrasives.

The chipped stone material show a heavy reliance on drills/ borers which at least for a large part must have been used for perforating the bead blanks. 50% of the chipped stone tools from the northern area and more than 90% of the tools found in the p4 are drills/ borers (Table 2; Fig. 6). Comparable workshops show the same high amount, e.g. the material from the LPPNB site of Al-Basit in Wadi Musa where 80% of the tools were identified as drills (Rollefson and Parker 2002: 22). Even though the high number of drills is comparable to other workshops, it has to be taken into consideration that they could have been used for other purposes than bead production. The tools produced here could also be intended for work in bone, wood or leather, which in most cases would not leave any archaeological traces.

A large part of the drills show signs of use, either the tip is broken or damage is seen on the retouched edges. The drills seem to have been produced in large numbers of which some may have been stored for later use, as not all show clear signs of use. This of course has to be tested in a micro-wear analysis. The tools have only been subjected to visual examination, in some cases with the use of a magnifying glass (10x).

As is the case with the Al-Basit drills a large part of the drills/borers analyzed here have the boring tip asymmetrically placed in relation to the lateral edges of the blank and the boring tips are not straight (Fig. 6). Many show a curved long axis as well as a twisted profile.

The authors stated in the publication of the Basit material (Rollefson &d Parker 2002: 22-23) that a bow drill would not have been an obvious choice of tool as it is too difficult to control when the drills are not straight and symmetrical as was the case with the drills published from Gebe Na’ja (Finlayson and Betts 1990: 14). The question is in what way the penetration of the beads could have been achieved if a bow drill was not in use. The holes in the beads look symmetrical, which will be difficult to achieve using a handheld borer.

A number of the tools seem at first sight to be a borer with the tip broken off, but a closer look at the distal end does not show a clear break but retouching of the complete distal end (Fig. 7). Some of these also show signs of use. As was already suggested above they may
have been used in a different part of the process, perhaps as small scrapers for shaping and grinding of the surface before or after the hole was made. It is also possible that broken borers were reused here after the tip had broken off.

The production of the chipped stone tools was also done in the workshop. The presence of 30 bladelet cores in the pit clearly fits with tool blanks primarily being bladelets (Fig. 8). The cores are made on small chunks or flakes and about half of them have two platforms. Apparently, only one is naviform, the rest are various bidirectional types indicating that each core was used to produce as many bladelets as possible but not in a very standardized manner. The size of the working face range from 3.3 to 5.5 cm with an average of 4.2 cm.

Also a few burins and some burin spalls are attested in the material which is also consistent with the presence of drills made on burin spalls.

Both bladelets and burin spalls have regularly been used for blanks as is seen from the published workshops. Al-Bastī used primarily bladelets (Rollefson 2002: 5; Rollefson and Parker 2002: 22), while the sites of Gebel Naʿja (Finlayson and Betts 1990: 19) and Biswāb al-Ghazāl (Rollefson et al. 1999: 3) were engaged in the production of burin spalls for use as tool blanks. Further details on the chipped stone material presented here can be seen elsewhere (Jensen 2004).

The definition of Area I as a dump has already been mentioned. Therefore it is not unlikely that a pit already existed or has been dug in order to be filled with the remains from a workshop activity. Also, the northern area is interpreted as a dump area, at least prior to the construction of the wall of Enclosure A. The question is, therefore, where the production originally took place.

It is likely that the dumping did not take place too far from the workshop area; an obvious suggestion for the Area I pit is the eastern part where plaster floors are found. When the surface is cleaned after the workshop activities have taken place, it is easy to Demp the material in a readymade pit close by. But that does not explain the material found north of Unit B. The excavation diaries show high concentrations of chipped stone, animal bones and small finds located in levels deriving from the collapsed roofs and walls. It is possible that some of the material was deposited after the houses collapsed, that is, the plots were used as dumps, but it cannot be excluded that part of the material was situated on the roof at the time of the collapse therefore ending up in the fill. Based on the latter hypothesis we suggest that the roofs of the domestic units were used for activities, that is, the buildings had flat substantial roofs. A reconstruction of the houses having flat roofs was tested during the excavation season of 2004. A section left after the 2001 excavation season which cut through the northern part of Unit K showed that further excavation in this unit could provide details to the reconstruction of the building process. The walls of Unit K are preserved to a height of 1.4 m. The results which have been described in detail elsewhere (Jensen et al. in prep.; Hermansen and Billø in prep.), show evidence of a substantial roof seen as large, burned, wooden roof beams, excavated close to floor level covered by a thick layer of mud with fist sized stones on which the stone slabs from the collapsed walls are deposited. The finds are similar to what can be seen in present-day traditional architecture in the area, where flat roofs are constructed as a skeleton of wooden beams, on which a layer of branches and straw are placed, all covered with a thick layer of mud in which stones are incorporated.

Workshops and activity areas in the PPIB period: The excavations at Shkārat Ṭaised

If an interpretation with flat roofed buildings is correct, which seem likely considering the evidence appearing in Unit K, the material discussed here could have been swept down from the roof of Unit B which would create a deposit over a larger area as is seen here.

INTER-SITE LEVEL

Bead production takes place at almost all sites; therefore, even though bead production identified at this site is based partly on imported material, beads are also made on bone, shell and local soft stone, it is not possible to conclude if the production was for local consumption only or if the finished products were used in inter-site exchange, as may be the case for the beads produced at Biswāb al-Ghazāl (Rollefson et al. 1999: 5). As already mentioned by Miller (1996: 27-28) a large number of beads are needed to produce just one or few necklaces, assuming necklaces are the intended product. Quite a large number of beads have to be produced if necklaces are part of the inter-site exchange network. The question is if the remains found here support such a large number. Experimental work is needed to evaluate the outcome of the production both in terms of the amount of raw material debris produced and the efficiency of the drills and therefore the number of drills needed. Experiments will also provide information on the skills needed, which is interesting in the discussion of the level of craft specialization as shortly commented on earlier. At least the production of the chipped stone tools used in bead production is not standardized and does not require much skill.

A quick look through the find list of the nearby and contemporary site of Beitđā has shown that the material most often used there for beads was bone. Only in two cases was the material specified as a green stone, which of course can be other types of stone than turquoise. Based on the information from the site it is not likely that bead production from turquoise took place in Beitđā, neither have beads of turquoise been received from other sites such as Shkārat Ṭaised. However, it has to be taken in consideration that sieving was not used regularly at Beitđā, which may have had an influence on the number of beads found during excavation.

Inter-site exchange is taking place between the inhabitants of Shkārat Ṭaised and other villages/areas as seen from a number of other products found at the site. A single fragment of an obsidian blade found in Unit F, unfortunately not in an interesting context, as well as the presence of several different mollusk species all deriving from the Red Sea (Kalbzan et al. 2002: 19) attest to the participation in an inter-site exchange-network.

Birds

Looking at the finds from Shkārat Ṭaised another activity is of special interest here. The analysis of the faunal remains has shown that more than 5% can be identified as bird bones. This in itself is not a remarkable figure, and it has to be taken into consideration that the figure covers a rather small minimum number of individuals; MN1 is calculated as 42, not including the unidentified fragments (Banggaard 2004: table 2). But interestingly, of those that can be identified to species 97% (MN1 = 39) derive from birds of prey representing a large variation of species as seen from table 3. A heavy reliance on raptors is exceptional and the fact that a large diversity of raptor species is found is also worth notice. Most of the bones, 90% of the total, are leg or wing bones. This suggests that the animals were hunted for their claws and
feathers and not for meat. The same distribution is seen at the PPNA site of Neiv Hagnot (Tchernev 1994), where the faunal material consists of a large collection of bird bones, but only raptors are represented exclusively as wings and claws. Not many sites have published details on the bird bones. The nearby LPPNB site of Ba‘ja has a very low percentage of bird bones (0.4% of the total). A large part of these are raptors which are primarily represented as wings and claws (Von den Driesch et al. in press; Bangsgaard pers. comm.), but they only represent very few individuals. We would therefore suggest that the hunting of birds of prey was a specialized activity for the inhabitants of Shkhrat Musaieh. It may also be suggested that the products, feathers and claws, were used in an inter-site exchange network, although the rather low count of a minimum number of individuals does not necessarily support this. But the most interesting about the preference for wings and claws is the possible special use of these products. I full discussion of this question is outside the scope of the present article, but as seen from the well known representations of birds at various sites in the Near East a symbolic and/or ritual use of wings and claws is possible. The representations include the reliefs and wall paintings at Çatal Hıyuk (Mellaart 1967), the primarily monumental sculptures and depictions on pillars at Nevali Cori (Hauptmann 1999: 75-76) and Göbekli Tepe (Peters and Schmidt 2004) all in Anatolia, as well as smaller sculptures of birds heads from the site of Nenrik 9 in Upper Mesopotamia (Kempisty and Kozlowski 1990).

The spatial distribution of the bird bones has also given interesting results (Bangsgaard 2004). Almost 30% of the bones from Unit B were bird bones representing at least five different species of raptors indicating that the inhabitants of B were either specialized hunters or had easy access to the hunting products, indicating that they were directly involved in the exchange network, whether intra- or inter-site.

CONCLUSION

The data presented here shows that a large part of the community takes part in day-to-day activities in relation to food preparation either in cooperation with other inhabitants, as is seen with the grinding activities in Unit J, or dispersed around the settlement as is indicated by the distribution of the faunal remains, although outdoor areas in the outskirts of the village tend to be used more consistently for butchering activities, as with area I, which is not surprise considering the small and waste produced from that kind of activity.

Of the more production related activities the bead production is studied in most detail. However, since the material is found dumped in a secondary context, it is difficult to conclude on who participated and where the work took place. I have suggested that a limited number of people were engaged in the workshop, inhabitants of one or few buildings around the open area I, perhaps, but not necessarily, trained specialists, but based on the amount of material excavated certainly not full-time. The inhabitants of Unit B are seen as one of the most obvious suggestions, if we may assume that the roof area are considered part of the area of the individual housing units and not as public space. It is therefore particularly interesting that among the buildings analyzed so far the presence of bird bones suggest that the inhabitants of Unit B also had special access to these products.

Bibliography

Altunbilek, C.; Coskunus, G.; Dede, Y. Jovinoglu, M.R.; Nemorini, C.; and Özdoğan, A.

Bangsgaard, P.

Bille Petersen, M.
2004 The Spatial Separation of Activities at MPPNB Shqarapat Masiad, Jordan. Paper read at the 4ICCAANE Conference.

Calley, S. and R. Grace

Costin, C. L.

Cross, J. R.

Driesch, A. von den, I. Cartajena and H. Marshat

Finlayson, B. and A. Betts

Gebel, H. G. K. and H.-D. Biemert

Grace, R.

Hardy-Smith, T. and P. C. Edwards

Hermansen, B.D., and C. H. Jensen
Jensen, C. H.

Kempisty, A. and S. K. Kozlowski

Kenoyer, J., M., M. Vidale and K. Bhan

Mellart, J.
1967 Çatal Höyük, a Neolithic Town in Anatolia. Thames and Hudson, London.

Miller, M.A.

Muller, J.

Murray, P.

Peters, J. and K. Schmidt

Rollefson, G.

Rollefson, G. and M.C. Parker

Rollefson, G., L. Quintero, and P. Wilke

Tchernev, E.
Working process Franchthi Cave, Greece
1. Removing rounded blank from shell
2. Grinding surface of blank
3. Drilling of central hole
4. Grinding edges to circular shape
5. Polishing of the finished bead

Suggested working process Shkînat Masiad
1. Chipping of blank (cylinder cut in pieces?)
2. Grinding of surface?
3. Drilling of central hole
4. Grinding edges to circular shape
5. Polishing of the finished bead

Fig. 5: Steps in the working process of bead production

Fig. 6: Drills' borers from the deposits

Workshops and activity areas in the PPNI period: The excavations at Shkînat Masiad

Fig. 7: Bladelets with retouched diral ends

Fig. 8: Bladlet cores for blank production

<table>
<thead>
<tr>
<th>Primary production</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores (incl. frgm.)</td>
<td>635</td>
<td>1.9</td>
</tr>
<tr>
<td>Core trimming elem.</td>
<td>1911</td>
<td>5.8</td>
</tr>
<tr>
<td>Debitage</td>
<td>26854</td>
<td>81.4</td>
</tr>
<tr>
<td>Debris</td>
<td>1473</td>
<td>4.5</td>
</tr>
<tr>
<td>Tools</td>
<td>2137</td>
<td>6.5</td>
</tr>
<tr>
<td>Total sorted</td>
<td>33010</td>
<td>100.1</td>
</tr>
<tr>
<td>(Total excavated)</td>
<td>48676</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Chipped stone material from Shkînat Masiad
Table 2: Tool types represented in the two deposits

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrowheads</td>
<td>4</td>
<td>7.4</td>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td>Drills/ Bores</td>
<td>27</td>
<td>50.0</td>
<td>418</td>
<td>92.1</td>
</tr>
<tr>
<td>Burins</td>
<td>5</td>
<td>9.3</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Scrapers</td>
<td>2</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knives</td>
<td>3</td>
<td>5.6</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Glossed elements</td>
<td>1</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Pièce Ésquillée"</td>
<td>2</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched pieces</td>
<td>3</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retouched bladelets (aerial ret.)</td>
<td>13</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retouched bladelets (oblique ret.)</td>
<td>17</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blades/ flakes w. use retouch</td>
<td>2</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>3</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indet. Fragments</td>
<td>2</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>100.2</td>
<td>454</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: Species of birds identified at Shikirat Mased

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>W (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kite</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Vulture</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Hen Harrier</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Goshawk</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hawk</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Buzzard</td>
<td>34</td>
<td>27</td>
</tr>
<tr>
<td>Eagle</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Falcon</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Birds of prey unspec.</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td>Others (non-raptors)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Unidentified bird</td>
<td>147</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>173</td>
</tr>
</tbody>
</table>

Gaziantep Kalehöyük 2003 Excavations

In 2003 the excavations of the pre-Medieval layers at the mound of Gaziantep Castle took place at the same time as the restoration and excavation works carried out inside the historical castle by the Museum of Gaziantep. The excavations were conducted as a last chance to examine the prehistoric building levels, which will be covered soon by limestone plaques as has been done in the Medieval Age.

A team under the direction of Gaziantep Museum, consisting of its director Hamza Gulluce, Assoc. Prof. Dr. Fikri Kulakoğlu, the archaeologists Kemal Sertok, Dr. Filomena Squadrone, Sabahattin Ezer, Ethnogral Nimul, Umut Alagöz and Sait Yılmaz, carried out the excavations which started on 29th of July and came to an end on 4th of October 2003.

It was already known that the historical Gaziantep Castle was built on a natural rocky bed in the Roman Period. It took its present plan during the Medieval Age (Fig. 1). Th. Bossert, W.C. Brito and A. Dönnmez were the first historians who introduced the Gaziantep Castle Mound to the Near Eastern archaeological literature in the 1950's. Bossert noted that he had collected some painted Halaf potsherds from the castle mound. Afterwards an Italian expedition team, that conducted a large-scale surface survey in the region of Gaziantep also surveyed at Gaziantep Kalehöyük.

The general purpose of the excavation at the castle is to control archaeologically the whole data gained by the previous researchers and to understand the prehistoric settlement sequence of the mound to enlighten the history of the city of Gaziantep.

Surface Survey

Prior to the excavations, a surface survey was carried out on the mound to get an idea of the cultural sequences and locate convenient areas for an excavation. This preliminary study showed that the mound was formed over the boulders rising from the south to the north. At the northern flank of the mound, this natural bedding rises up to the foundations of the castle. At the east and west sides of the castle, towers and water tunnels had destroyed much of the mound and did not offer a convenient site to excavate. The southern face of the castle seemed to be less untouched than the other parts of the mound and yielded much larger and more secure areas. Moreover, the mudbrick walls with the stone foundations that survived until today could easily be traced at the section of this face of the mound. Among the potsherds collected here, Reserved-Slip Ware and hand-made Early Chalcolithic-Halaf painted wares attested the earlier prehistoric levels (Fig. 2).

That is the reason why this area has been chosen for test excavations which started in three trenches (Fig. 3).

1. Assoc. Prof. Dr. Fikri Kulakoğlu, Ankara University Faculty of Letters, Department of Indo-European and Near Eastern Archaeology, ANKARA, TURKEY, ahingel@yahoo.com; Hamza Güllicce, Director of Gaziantep Museum, Gaziantep, TURKEY; M. Kemal Sertok, Konya University, Konya, TURKEY; and Filomena Squadrone, Via Macrignì Stanzì, 40A, 00145-ROME, ITALY, filomena@karaml.com.

2. We are grateful to the Government of Gaziantep M. Lütfullah Bagış for his generous help for the 2003 season excavations.
